

Association Between Patient Factors and Outcome of Synthetic Cartilage Implant Hemiarthroplasty vs First Metatarsophalangeal Joint Arthrodesis in Advanced Hallux Rigidus Foot & Ankle International® I-8 © The Author(s) 2017 Reprints and permissions: sagepub.com/journalsPermissions.nav DOI: 10.1177/1071100717723334 journals.sagepub.com/home/fai

Andy Goldberg, MBBS, MD, FRCS(Tr&Orth)^{1,2}, Dishan Singh, FRCS¹, Mark Glazebrook, MSc, MD, PhD, FRCSC³, Chris M. Blundell, MBChB, FRCS⁴, Gwyneth De Vries, MSc, MD, FRCSC⁵, Ian L. D. Le, MD, FRCSC⁶, Dominic Nielsen, FRCS⁷, M. Elizabeth Pedersen, MD, FRCSC⁸, Anthony Sakellariou, MBBS, FRCS⁹, Matthew Solan, FRCS¹⁰, Alastair S. E. Younger, MBChB, MSc, ChM, FRCSC¹¹, Timothy R. Daniels, MD, FRCSC¹², and Judith F. Baumhauer, MD, MPH¹³, on behalf of the Cartiva MOTION Study Group

Abstract

Background: We evaluated data from a clinical trial of first metatarsophalangeal joint (MTPJI) implant hemiarthroplasty and arthrodesis to determine the association between patient factors and clinical outcomes.

Methods: Patients \geq 18 years with hallux rigidus grade 2, 3, or 4 were treated with synthetic cartilage implant MTPJI hemiarthroplasty or arthrodesis. Pain visual analog scale (VAS), Foot and Ankle Ability Measure (FAAM) sports and activities of daily living (ADL) scores, and Short Form-36 Physical Function (SF-36 PF) subscore were obtained preoperatively, and at 2, 6, 12, 24, 52, and 104 weeks postoperatively. Final outcome data, great toe active dorsiflexion motion, secondary procedures, radiographs, and safety parameters were evaluated for 129 implant hemiarthroplasties and 47 arthrodeses. The composite primary endpoint criteria for clinical success included VAS pain reduction \geq 30%, maintenance/improvement in function, no radiographic complications, and no secondary surgical intervention at 24 months. Predictor variables included hallux rigidus grade; gender; age; body mass index (BMI); symptom duration; prior MTPJI surgery; preoperative hallux valgus angle, range of motion (ROM), and pain. Two-sided Fisher exact test was used (P < .05).

Results: Patient demographics and baseline outcome measures were similar. Success rates between implant MTPJI hemiarthroplasty and arthrodesis were similar (P > .05) when stratified by hallux rigidus grade, gender, age, BMI, symptom duration, prior MTPJI surgery status, and preoperative VAS pain, hallux valgus, and ROM.

Conclusion: Synthetic cartilage implant hemiarthroplasty was appropriate for patients with grade 2, 3, or 4 hallux rigidus. Its results in those with associated mild hallux valgus (≤ 20 degrees) or substantial preoperative stiffness were equivalent to MTPJI fusion, irrespective of gender, age, BMI, hallux rigidus grade, preoperative pain or symptom duration. **Level of Evidence:** Level II, randomized clinical trial.

Keywords: first metatarsophalangeal joint, hallux rigidus, hemiarthroplasty, synthetic cartilage implant

Introduction

Arthritis of the first metatarsophalangeal joint (MTPJ), or hallux rigidus, is a common problem affecting 1 in 40 people older than 50 years¹¹ and 45% of people aged 75 to 79 years.²¹ Moderate to severe hallux rigidus is often treated with arthrodesis, historically considered the most reliable option.¹⁶ However, the loss of motion through the MTPJ following arthrodesis can interfere with activities that require great toe motion, such as jumping and running, or the wearing of high heels, and can lead to transfer metatarsalgia or adjacent joint arthritis. A desire to preserve motion at the first MTPJ has prompted the development of several great toe implants, many of which demonstrated high rates of failure as a result of loosening, malalignment, dislocation, subsidence, implant fragmentation, and bone loss.^{23,24} A polyvinyl alcohol (PVA) hydrogel implant has been developed for use in first MTPJ hemiarthroplasty. The PVA hydrogel has a cartilage-like viscoelasticity,¹⁸ a tensile strength of 17 MPa comparable to that of human articular cartilage,¹⁸ and biomechanical properties (ie, compression-compressive modulus, shear-shear modulus, compressive creep-creep and creep recovery, and kinetic friction) very similar to cartilage.² Its high biocompatibility with cartilage, bone, synovium and muscle,¹⁸ combined with its compressibility, low friction, and durable bearing surface make it a suitable synthetic cartilage implant.^{2,3} Since the implant has similar osmotic, physical, and frictional properties to cartilage, replacement of the opposing articular surface is not required, permitting a hemiarthroplasty that maintains articulation through the joint.

In a recent prospective, randomized, multicenter, clinical trial of 202 patients with moderate to severe hallux rigidus, hemiarthroplasty of the first MTPJ with a synthetic cartilage implant demonstrated equivalent pain relief, functional outcomes, and safety to first MTPJ arthrodesis at 2 years' follow-up, with no cases of implant fragmentation, wear, or bone loss.⁴ First MTPJ active dorsiflexion motion improved by a mean of 6.2 degrees (27.3%) in 152 synthetic cartilage implant hemiarthroplasty patients and was maintained at 24 months. In a subset of 27 implant hemiarthroplasty patients who reached 5 years' follow-up, functional outcomes improved significantly and pain was reduced significantly compared to preoperative measures, and only 1 implant was removed and converted to fusion at 2 years postoperation, because of persistent pain.⁷

There is a paucity of data regarding the association between patient factors and clinical outcomes following hallux rigidus surgery. Several studies have directly compared the short- to mid-term outcomes (ie, 2-4 years) of first MTPJ hemiarthroplasty with various implants to MTPJ arthrodesis.^{9,10,13,17,19,20,22} However, these studies either did not evaluate the association between patient factors and outcomes 10,20,22 or the sample sizes were too small to permit such analyses. 9,17,19

The purpose of this study was to evaluate the longitudinal data from the aforementioned randomized, clinical trial comparing synthetic cartilage implant first MTPJ hemiarthroplasty with arthrodesis,⁴ to determine the association between numerous patient factors and the success or failure of these procedures. Success rates were also compared between treatment groups within each category of the patient factors.

Methods

Patients 18 years of age and older who had been diagnosed with Coughlin hallux rigidus grade 2, 3, or 4 based on combined radiologic and clinical observations⁵ including moderate to severe pain, and who were considered surgical candidates for arthrodesis, were treated with either hemiarthroplasty of the first MTPJ using a synthetic polyvinyl alcohol hydrogel implant (Cartiva Synthetic Cartilage Implant, Cartiva, Alpharetta, GA) or first MTPJ arthrodesis in a multicenter, non-inferiority clinical trial, as previously reported.⁴ Patients were randomized 72 hours or less prior to surgery, in a 2:1 allotment of implant hemiarthroplasty to arthrodesis. The randomized clinical trial was approved by each site's institutional review board, and all patients provided informed consent. The efficacy and safety data for the clinical trial have been previously reported.⁴ For the current study, patient demographic data and preoperative data collected prospectively for the original trial were assessed for the Safety population, comprising 152 hemiarthroplasties and 50 arthrodeses (Figure 1). Osseous union was determined by independent radiographic review of foot radiographs, which were taken preoperatively and at 2, 6, 12, 24, 52, and 104 weeks postoperatively. A patient's outcome was deemed successful if composite primary endpoint criteria for clinical success were met at 24 months, namely, (1) VAS

²Division of Surgery & Interventional Science, UCL, London, United Kingdom

⁴Northern General Hospital, Sheffield, United Kingdom

Corresponding Author:

Andy Goldberg, MBBS, MD, FRCS(Tr&Orth), Stanmore Royal National Orthopaedic Hospital NHS Trust, Brockley Hill, Stanmore, Middlesex HA7 4LP, United Kingdom.

Email: andy.goldberg@rnoh.nhs.uk

¹Stanmore Royal National Orthopaedic Hospital, Stanmore, Middlesex, United Kingdom

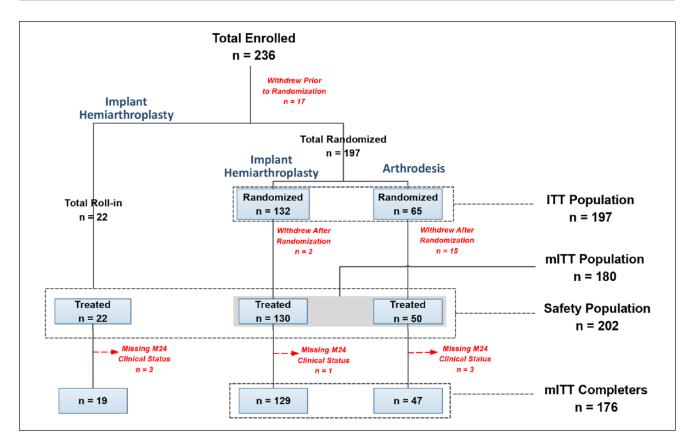
³Dalhousie University and Queen Elizabeth II Health Sciences Center, Halifax, Nova Scotia, Canada

⁵Dalhousie University and Memorial University of Newfoundland, Fredericton, New Brunswick, Canada

⁶University of Calgary, Calgary, Alberta, Canada

⁷St. George's Hospital, London, United Kingdom

⁸University of Alberta, Edmonton, Alberta, Canada


⁹Frimley Park Hospital, Frimley, Camberley, Surrey, United Kingdom

¹⁰Royal Surrey County Hospital, Guildford, Surrey, United Kingdom

¹¹Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada

¹²Division of Orthopaedic Surgery, St. Michael's Hospital, Toronto, Ontario, Canada

¹³Department of Orthopaedics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA

Figure 1. Pivotal trial study enrollment subject accountability tree. The Safety Population consisted of 152 patients (22 roll-in and 130 randomized) treated with synthetic cartilage implant hemiarthroplasty and 50 control patients treated with arthrodesis. The modified Intent to Treat (mITT) population included 130 patients randomized and treated with synthetic cartilage implant hemiarthroplasty and 50 patients randomized and treated with arthrodesis, of whom 129 hemiarthroplasty and 47 arthrodesis patients had complete data available at 24-month follow-up (mITT Completers).

pain reduction \geq 30%; (2) maintenance or improvement in function; (3) freedom from radiographic complications; and (4) no secondary surgical intervention. Final outcome data were assessed in the modified Intent to Treat (mITT) population (Figure 1).

The original randomized clinical trial reported equivalent pain relief and functional outcomes in the synthetic implant first MTPJ hemiarthroplasty group and the first MTPJ arthrodesis group.⁴ Complete data at 24 months' follow-up (mITT Completers; Figure 1) included 129 patients with synthetic cartilage implant hemiarthroplasty and 47 patients who underwent an arthrodesis. Patient demographics and baseline outcome measures were similar for both groups (Table 1).

The standardized operative technique used for the synthetic cartilage implant and postoperative protocol has been published previously.^{4,24} Briefly, the first MTPJ was accessed via a straight dorsal incision, or a standard midmedial approach (Figure 2A). The osteophytes were removed from the metatarsal head; in some cases, the osteophyte on the dorsal side of the proximal phalanx was also removed (Figure 2B). A central guide wire was placed, the MT head was drilled (Figures 2C, 2D) and an appropriately sized 8- or 10-mm implant was seated in the MT head to allow approximately 1.5 to 2.0 mm of the implant to extend beyond the adjacent native cartilage (Figures 2E, 2F). With the implant at the correct depth, range of motion was checked against the implant, ensuring there was no restriction or limitation of the joint movement. Patients could bear weight immediately as tolerated. At 2 weeks, skin sutures were removed, range of motion (ROM) exercises were begun, and patients resumed wearing regular shoes, as tolerated.

First MTPJ arthrodesis was performed using standard techniques, as described in the literature.⁶ The joint was aligned and positioned in slight dorsiflexion and valgus with neutral rotation and held with K-wires. The construct was then stabilized with crossed screws or plate and screws. The foot was immobilized in a heel wedge shoe or boot for 6 to 10 weeks, or until osseous union occurred, at which time weight bearing was begun at the discretion of the surgeon.

Factor	Implant Hemiarthroplasty (n = 130)	Arthrodesis (n = 50)	t Test P Valueª	Wilcoxon P Value ^b .097	
Age at surgery, y, M ± SD (range)	57.4 ± 8.8 (30.5-79.2)	54.9 ± 10.5 (32.4-78.2)	.115		
Gender, n (%) Male	26 (20)	12 (24)	.558	.535	
Female BMI, kg/m ² , M ± SD (range)	104 (80) 27.2 ± 4.4 (19.1-37.1)	38 (76) 26.3 ± 4.7 (19.1-41.6)	.222	.175	
Outcome Measures, $M \pm SD$ (range)		(/			
VAS pain	68.0 ± 13.9 (27.8-100.0)	69.3 ± 14.3 (38.0-97.5)	.571	.529	
FAAM sports	36.9 ± 20.9^{d} (0.0-100.0)	35.6 ± 20.5 (0.0-87.5)	.694	.502	
FAAM ADL	59.4 ± 16.9° (7.1-100.0)	56.0 ± 16.8 (22.6-95.2)	.222	.152	
SF-36 PF	52.4 ± 22.8 (0.0-100.0)	49.8 ± 23.6 (15.0-100.0)	.499	.352	

Table I. Baseline Demographics and Outcome Measure Scores of Implant Hemiarthroplasty and Arthrodesis Modified Intent to Treat (mITT) Cohorts.

Abbreviations: BMI, body mass index; FAAM, Foot and Ankle Ability Measure; ADL, activities of daily living; SF-36 PF, Short Form-36 Physical Function subscore.

^aTwo-sample pooled *t* test *P* value (chi-square test for gender).

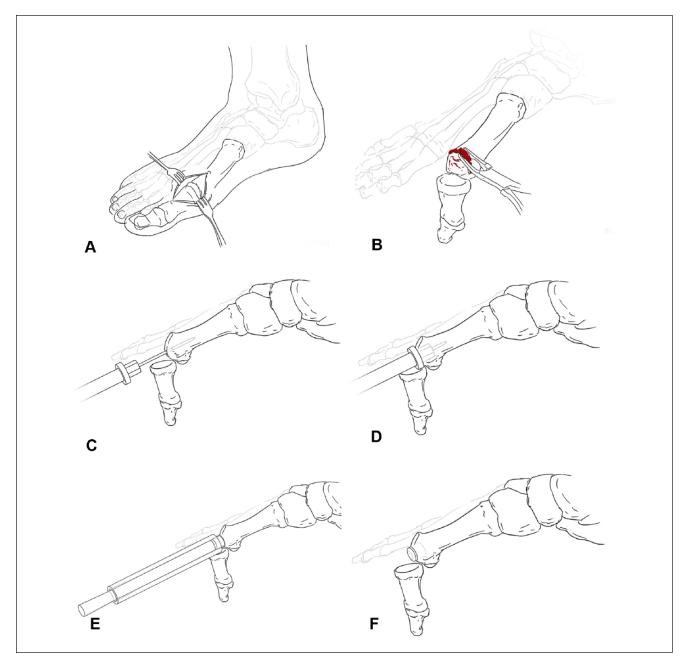
^bTwo-sample Wilcoxon rank-sum test *P* value (Fisher exact test for gender).

n=129 for this score only.

^dn=127 for this score only.

Data Collection

Outcome measures included a pain visual analogue scale (VAS), the Foot and Ankle Ability Measure (FAAM) sports and activities of daily living (ADL) subscales, and Short Form-36 Physical Functioning (SF-36 PF) subscore, which were prospectively recorded for all study patients preoperatively and at 2 (pain VAS and FAAM only), 6, 12, 24, 52 and 104 weeks postoperatively. The Initiative on Methods, Measurement, and Pain Assessment in Clinical Trials (IMMPACT) consensus group defined a decrease in pain of \geq 30% to be a clinically meaningful improvement for patients and recommended this value be reported in clinical trials.⁸ The FAAM has been validated in subjects with a leg. foot, or ankle musculoskeletal disorder¹⁵; the minimal clinically important difference (MCID) is 9 points for the FAAM Sports score and 8 points for the FAAM ADL score.⁴ The SF-36 is a generic measure of general health status and has been validated in the end-stage ankle arthritis population¹⁴: the MCID for the SF-36 PF subscore is 3.3 points.¹ Great toe active dorsiflexion motion, secondary procedures, radiographs, and safety parameters were also evaluated.


Patient demographic and preoperative data assessed as predictor variables included hallux rigidus grade,⁵ hallux valgus angle, preoperative ROM, gender, age, body mass index (BMI), preoperative symptom duration, preoperative pain level, and prior first MTPJ surgery (eg, joint debridement or cheilectomy), all of which were captured prospectively at baseline.

Statistical Analysis

Categorical data are presented as numbers and percentages. Continuous data are presented as means and standard deviations with ranges. Two-sided Fisher exact test was used to assess the association between patient demographic and preoperative variables and clinical success, within each treatment group. In secondary analyses, success rates were compared between groups within each level of the patient demographic and preoperative variables. A *P* value <.05 was considered statistically significant.

Results

There were no significant differences in success rates for either first MTPJ synthetic cartilage implant hemiarthroplasty or arthrodesis when stratified by hallux rigidus grade, degree of preoperative hallux valgus, extent of preoperative ROM, gender, age, BMI, duration of symptoms, prior MTPJ1 surgery status (including joint debridement and/or cheilectomy), and preoperative VAS pain score (all P > .05; Table 2). There were also no significant differences between treatment groups within any level of the patient or preoperative factors

Figure 2. Overview of operative technique for synthetic cartilage implant first metatarsophalangeal joint hemiarthroplasty: (A) straight dorsal or medial incision and exposure of the entire joint to gain access to the first metatarsal head; (B) resection of osteophytes from the metatarsal head; (C) guide wire placement and advancement of the cannulated drill bit; (D) drilling of metatarsal head to produce bed for the implant; (E) implant compressed within the introducer tube and positioned for insertion into the metatarsal head cavity; and (F) implant seated into metatarsal head with expected 1.5- to 2.0-mm implant prominence.

evaluated (Table 2). Males tended to have greater clinical success with implant hemiarthroplasty vs arthrodesis, but this difference was not statistically significant. Patients with less preoperative motion had marginally higher success rates with hemiarthroplasty vs fusion, but these differences were not statistically significant.

Discussion

In a large, randomized, clinical trial, synthetic cartilage implant hemiarthroplasty of the first MTPJ demonstrated equivalent success rates compared to first MTPJ arthrodesis, regardless of hallux rigidus grade, gender, age, BMI,

	Stratification	Synthetic Implant Hemiarthroplasty			Arthrodesis					
Patient Variable		N^{a}	n ^b	% Success	P Value*	N^{a}	n ^b	% Success	P Value*	P Value [†]
Coughlin ^c hallux rigidus grade	2	36	26	72.2	.364	18	12	66.7	.331	.756
	3	73	61	83.6		20	17	85.0		.999
	4	20	16	80.0		9	8	88.9		.999
Preoperative hallux valgus angle, degrees	0 to <15	101	81	80.2	.797	34	28	82.4	.429	.999
	≥15 to ≤20	28	22	78.6		13	9	69.2		.698
Preoperative active peak dorsiflexion, degrees	≥40 to ≤60	10	7	70.0	.308	4	2	50.0	.357	.580
	≥30 to <40	22	17	77.3		10	9	90.0		.637
	>10 to <30	72	56	77.8		26	21	80. I		.999
	≤10	25	23	92.0		7	5	71.4		.201
Gender	Female	104	81	77.9	.405	36	29	80.6	.679	.817
	Male	25	22	88.0		П	8	72.7		.343
Age	≥65 y	22	20	90.9	.243	9	9	100	.172	.999
	<65 y	107	83	77.6		38	28	73.7		.659
Body mass index	<30	94	76	80.9	.629	39	30	76.9	.667	.640
	≥30	35	27	77.1		8	7	87.5		.999
Duration of symptoms prior to surgery	<24 mo	15	10	66.7	.183	3	3	100	1.000	.522
	≥24 mo	114	93	81.6		44	34	77.3		.655
Prior MTPJI surgery status	Prior surgery ^d	12	8	66.7	.259	4	4	100	.564	.516
	No prior surgery	117	95	81.2		43	33	76.7		.513
Preoperative pain VAS score	Mild (0 to <40 mm) ^e	2	Ι	50.0	.196	2	I.	50.0	.140	.999
	Moderate (≥40 to ≤58 mm)	27	24	88.9		8	8	100.0		.999
	Severe (>58 to 100 mm)	100	78	78.0		37	28	75.7		.819

Table 2. Success Rates of Synthetic Cartilage Implant Hemiarthroplasty of the First Metatarsophalangeal Joint (n=129) and First Metatarsophalangeal Joint Arthrodesis (n=47), Stratified by Patient Factors.

Abbreviations: MTPJI, first metatarsophalangeal joint; VAS, visual analog scale.

 ^{a}N = total number of patients in the treatment cohort with that variable.

^bn = total number of patients in the treatment cohort with that variable who met the composite primary endpoint criteria for clinical success (ie, VAS pain reduction ≥30%, maintenance or improvement in function, freedom from radiographic complications, and no secondary surgical intervention). °Coughlin and Shurnas.⁵

^dPrior surgery other than arthroplasty or arthrodesis, for example, joint debridement or cheilectomy.

eVAS pain <40 mm was an exclusion criterion for the study; these patients were protocol violations.

P values were determined using Fisher exact test, within group.

[†]P values were determined used Fisher exact test, between groups within strata.

degree of preoperative hallux valgus, extent of preoperative ROM, preoperative duration of symptoms, prior first MTPJ surgery, and preoperative VAS pain score. Notably, patients with larger BMI, patients with minimal ROM (ie, stiff joints), and patients with mild hallux valgus had equivalent success rates for both procedures, indicating that synthetic implant first MTPJ hemiarthroplasty could be considered as a reasonable operative option for moderate to severe hallux rigidus.

Only 1 other study has compared the short-term outcomes (ie, 2 to 3 years) of metatarsal head-resurfacing hemiarthroplasty to those of MTPJ arthrodesis. Erdil et al⁹ retrospectively reviewed patients with advanced hallux rigidus who underwent resurfacing hemiarthroplasty with the HemiCAP (n=14) or arthrodesis with 2 cannulated compression screws (n=12). They also had a third cohort of patients who underwent total joint arthroplasty with the

ToeFit-Plus (n=12). They reported similar functional outcomes following arthroplasty and hemiarthroplasty, and less function due to less range of motion in arthrodesis patients, who also had less pain, at 28 to 35 months' followup. However, they did not evaluate the association between patient factors and clinical outcomes; there is a notable lack of such data available in the literature.

To be included in the original clinical trial, patients had to be diagnosed with Coughlin grade 2, 3, or 4 hallux rigidus, which is based on a combination of radiologic and clinical observations,⁵ and all patients had to be considered surgical candidates for arthrodesis. It is important to point out that Coughlin grade 2 includes moderate to severe pain and stiffness, which may be constant.⁵

The literature generally holds that joint-sparing procedures should be reserved for mild to moderate osteoarthritis, and that fusion should be used in late-stage moderate to severe osteoarthritis.^{5,12,23} Our findings do not support this proposition, as we found no significant difference in outcome between the groups, irrespective of the hallux rigidus grade, preoperative presence of a stiff toe, a high BMI, or the presence of mild hallux valgus (≤ 20 degrees).

Synthetic implant first MTPJ hemiarthroplasty can be used to successfully treat patients with mild hallux valgus; however, patients with >20 degrees hallux valgus were excluded from the clinical trial, and concomitant valgus correction procedures were also not permissible. Hence, we are unable to comment on the outcome of synthetic cartilage implant first MTPJ replacement in cases with >20 degrees hallux valgus.

We acknowledge the limitations of this study. The original clinical trial was powered for noninferiority to demonstrate equivalence of the 2 procedures, whereas the current study retrospectively analyzed success rates for variations in patient factors within each treatment group and may not have been sufficiently powered for some patient factors; thus, a type II error cannot be excluded in the subgroup analysis. Some patient factors that may be associated with clinical outcomes may not have been recorded in the original trial. Exclusion criteria for the original trial also excluded some patient factors that would have been of interest to evaluate within the current study, such as the presence of hallux valgus >20 degrees or an associated deformity correction. Another limitation is the loss of 15 patients who initially consented to randomization and treatment and subsequently withdrew from the original trial following randomization to arthrodesis; statistical analyses were therefore performed on the modified intent to treat population, so as to address the potential bias in favor of the implant. The current study did not assess surgeon factors such as type of approach, type of fixation used, or position of construct in the arthrodesis group, which could be confounding variables, and we intend to assess these in a subsequent study. Finally, this study evaluated association of patient factors based on 2-year outcomes. As data for 5 years' and longer follow-up become available, it is possible there may be some failures, which could potentially modify some of the associations observed here.

Strengths of this study include the rigorous quality of the longitudinal data obtained as part of a large, multicenter, well-controlled, randomized clinical trial, the large sample sizes (hemiarthroplasty n=129; arthrodesis n=47), and the low rate of patients lost to follow-up (2%). Most previous comparative studies of operative treatment for hallux rigidus have small numbers in each treatment arm.^{9,10,16,17,19,22} The data from this study are broadly generalizable, as they represent patients enrolled by 49 surgeons from 12 centers across 2 countries. This study provides the first thorough evidence of the association between patient factors and clinical outcomes following hallux rigidus surgery.

In conclusion, based on our short-term data of 2-year follow-up, synthetic cartilage implant hemiarthroplasty was an appropriate treatment for patients with hallux rigidus of Coughlin grade 2, 3, or 4. Our results demonstrate that it was a reasonable choice in hallux rigidus associated with mild hallux valgus (≤ 20 degrees), and in patients with a high degree of preoperative stiffness, irrespective of gender, age, BMI, hallux rigidus grade, preoperative pain, or duration of symptoms, in contrast to what might have been expected.

Acknowledgments

Special recognition goes to Nick Cullen, MBBS, FRCS, Mark Davies, BM, FRCS, Howard Davies, MBChB, MSc, FRCS, James Davis, MBBS, FRCS, Anna Fox, MBChB, MSc, FRCS, Gordon Goplen, MD, FRCSC, Murray Penner, MD, FRCSC, and all the MOTION study coordinators from the United Kingdom and Canada. The authors thank Dagmar Gross for assistance with preparation of this manuscript.

Declaration of Conflicting Interests

The author(s) declared the following potential conflicts of interest with respect to the research, authorship, and/or publication of this article: Anthony Sakellariou, MBBS, FRCS, reports other from Zimmer/Biomet, during the conduct of the study. ICMJE forms for all authors are available online.

Funding

The author(s) declared receipt of the following financial support for the research, authorship, and/or publication of this article: The authors received research and institutional support, consulting fees and support for travel expenses from Cartiva Inc for the research, authorship, and/or publication of this article.

References

- Angst F, Aeschlimann A, Stucki G. Smallest detectable and minimal clinically important differences of rehabilitation intervention with their implications for required sample sizes using WOMAC and SF-36 quality of life measurement instruments in patients with osteoarthritis of the lower extremities. *Arthritis Rheum.* 2001;45(4):384-391.
- Baker MI, Walsh SP, Schwartz Z, Boyan BD. A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. *J Biomed Mater Res B Appl Biomater*. 2012;100(5):1451-1457.
- Baumhauer JF, Marcolongo M. The science behind wear testing for great toe implants for hallux rigidus. *Foot Ankle Clin*. 2016;21(4):891-902.
- Baumhauer JF, Singh D, Glazebrook M, et al. Prospective, randomized, multi-centered clinical trial assessing safety and efficacy of a synthetic cartilage implant versus first metatarsophalangeal arthrodesis in advanced hallux rigidus. *Foot Ankle Int.* 2016;37(5):457-469.
- Coughlin MJ, Shurnas PS. Hallux rigidus. Grading and longterm results of operative treatment. *J Bone Joint Surg Am*. 2003;85(11):2072-2088.

- Coughlin MJ, Shurnas PS. Hallux rigidus. J Bone Joint Surg Am. 2004;86(suppl 1, pt 2):119-130.
- Daniels TR, Younger AS, Penner MJ, et al. Midterm outcomes of polyvinyl alcohol hydrogel hemiarthroplasty of the first metatarsophalangeal joint in advanced hallux rigidus. *Foot Ankle Int.* 2017;38(3):243-247.
- Dworkin RH, Turk DC, Wyrwich KW, et al. Interpreting the clinical importance of treatment outcomes in chronic pain clinical trials: IMMPACT recommendations. *J Pain*. 2008;9(2):105-121.
- Erdil M, Elmadag NM, Polat G, et al. Comparison of arthrodesis, resurfacing hemiarthroplasty, and total joint replacement in the treatment of advanced hallux rigidus. *J Foot Ankle Surg.* 2013;52(5):588-593.
- Gibson JN, Thomson CE. Arthrodesis or total replacement arthroplasty for hallux rigidus: a randomized controlled trial. *Foot Ankle Int.* 2005;26(9):680-690.
- Gould N, Schneider W, Ashikaga T. Epidemiological survey of foot problems in the continental United States: 1978-1979. *Foot Ankle*. 1980;1(1):8-10.
- 12. Ho B, Baumhauer J. Hallux rigidus. *EFORT Open Rev.* 2017;2(1):13-20.
- Kim PJ, Hatch D, Didomenico LA, et al. A multicenter retrospective review of outcomes for arthrodesis, hemi-metallic joint implant, and resectional arthroplasty in the surgical treatment of end-stage hallux rigidus. *J Foot Ankle Surg.* 2012;51(1):50-56.
- Madeley NJ, Wing KJ, Topliss C, et al. Responsiveness and validity of the SF-36, Ankle Osteoarthritis Scale, AOFAS Ankle Hindfoot Score, and Foot Function Index in end stage ankle arthritis. *Foot Ankle Int.* 2012;33(1):57-63.
- Martin RL, Irrgang JJ, Burdett RG, Conti SF, Van Swearingen JM. Evidence of validity for the Foot and Ankle Ability Measure (FAAM). *Foot Ankle Int*. 2005;26(11):968-983.

- McNeil DS, Baumhauer JF, Glazebrook MA. Evidence-based analysis of the efficacy for operative treatment of hallux rigidus. *Foot Ankle Int.* 2013;34(1):15-32.
- Mermerkaya MU, Adli H. A comparison between metatarsal head-resurfacing hemiarthroplasty and total metatarsophalangeal joint arthroplasty as surgical treatments for hallux rigidus: a retrospective study with short- to midterm follow-up. *Clin Interv Aging*. 2016;11:1805-1813.
- Noguchi T, Yamamuro T, Oka M, et al. Poly(vinyl alcohol) hydrogel as an artificial articular cartilage: evaluation of biocompatibility. *J Appl Biomater*. 1991;2(2):101-107.
- Raikin SM, Ahmad J, Pour AE, Abidi N. Comparison of arthrodesis and metallic hemiarthroplasty of the hallux metatarsophalangeal joint. *J Bone Joint Surg Am.* 2007;89(9): 1979-1985.
- Simons KH, van der Woude P, Faber FW, van Kampen PM, Thomassen BJ. Short-term clinical outcome of hemiarthroplasty versus arthrodesis for end-stage hallux rigidus. *J Foot Ankle Surg.* 2015;54(5):848-851.
- van Saase JL, van Romunde LK, Cats A, Vandenbroucke JP, Valkenburg HA. Epidemiology of osteoarthritis: Zoetermeer survey. Comparison of radiological osteoarthritis in a Dutch population with that in 10 other populations. *Ann Rheum Dis.* 1989;48(4):271-280.
- Voskuijl T, Onstenk R. Operative treatment for osteoarthritis of the first metatarsophalangeal joint: arthrodesis versus hemiarthroplasty. *J Foot Ankle Surg.* 2015;54(6): 1085-1088.
- 23. Yee G, Lau J. Current concepts review: hallux rigidus. *Foot Ankle Int*. 2008;29(6):637-646.
- 24. Younger ASE, Baumhauer JF. Polyvinyl alcohol hydrogel hemiarthroplasty of the great toe: technique and indications. *Tech Foot Ankle Surg*. 2013;12(3):164-169.